The Probabilistic Heuristic In Local (PHIL) Search Meta-strategy
نویسنده
چکیده
Local search, in either best or first admissible form, generally suffers from poor solution qualities as search cannot be continued beyond locally optimal points. Even multiple start local search strategies can suffer this problem. Meta-heuristic search algorithms, such as simulated annealing and tabu search, implement often computationally expensive optimisation strategies in which local search becomes a subordinate heuristic. To overcome this, a new form of local search is proposed. The Probabilistic Heuristic In Local (PHIL) search meta-strategy uses a recursive branching mechanism in order to overcome local optima. This strategy imposes only a small computational load over and above classical local search. A comparison between PHIL search and ant colony system on benchmark travelling salesman problem instances suggests that the new meta-strategy provides competitive performance. Extensions and improvements to the paradigm are also given.
منابع مشابه
Modeling the Time Windows Vehicle Routing Problem in Cross-Docking Strategy Using Two Meta-Heuristic Algorithms
In cross docking strategy, arrived products are immediately classified, sorted and organized with respect to their destination. Among all the problems related to this strategy, the vehicle routing problem (VRP) is very important and of special attention in modern technology. This paper addresses the particular type of VRP, called VRPCDTW, considering a time limitation for each customer/retai...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملDESIGN OF MINIMUM SEEPAGE LOSS IRRIGATION CANAL SECTIONS USING PROBABILISTIC SEARCH
To ensure efficient performance of irrigation canals, the losses from the canals need to be minimized. In this paper a modified formulation is presented to solve the optimization model for the design of different canal geometries for minimum seepage loss, in meta-heuristic environment. The complex non-linear and non-convex optimization model for canal design is solved using a probabilistic sear...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملLocal Search Enabled Extremal Optimisation for Continuous Inseparable Multi-objective Benchmark and Real-world Problems
Local search is an integral part of many meta-heuristic strategies that solve single objective optimisation problems. Essentially, the meta-heuristic is responsible for generating a good starting point from which a greedy local search will find the local optimum. Indeed, the best known solutions to many hard problems (such as the travelling salesman problem) have been generated in this hybrid w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005